Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys.
نویسندگان
چکیده
Previous studies have shown that the tonotopic organization of primary auditory cortex is altered subsequent to restricted cochlear lesions (Robertson and Irvine, 1989) and that the topographic reorganization of the primary somatosensory cortex is correlated with changes in the perceptual acuity of the animal (Recanzone et al., 1992a-d). Here we report an increase in the cortical area of representation of a restricted frequency range in primary auditory cortex of adult owl monkeys that is correlated with the animal's performance at a frequency discrimination task. Monkeys trained for several weeks to discriminate small differences in the frequency of sequentially presented tonal stimuli revealed a progressive improvement in performance with training. At the end of the training period, the tonotopic organization of Al was defined by recording multiple-unit responses at 70-258 cortical locations. These responses were compared to those derived from three normal monkeys and from two monkeys that received the same auditory stimuli but that were engaged in a tactile discrimination task. The cortical representation, the sharpness of tuning, and the latency of the response were greater for the behaviorally relevant frequencies of trained monkeys when compared to the same frequencies of control monkeys. The cortical area of representation was the only studied parameter that was correlated with behavioral performance. These results demonstrate that attended natural stimulation can modify the tonotopic organization of Al in the adult primate, and that this alteration is correlated with changes in perceptual acuity.
منابع مشابه
Refining cortical representation of sound azimuths by auditory discrimination training.
Although training-based auditory cortical plasticity in the adult brain has been previously demonstrated in multiparametric sound domains, neurochemical mechanisms responsible for this form of plasticity are not well understood. In this study, we trained adult rats to identify a target sound stimulus at a specific azimuth angle by using a reward-contingent auditory discrimination task. We found...
متن کاملReward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals.
Adult owl monkeys were trained to detect an increase in the envelope frequency of a sinusoidally modulated 1-kHz tone. Detection was positively correlated with the magnitude of the change in the envelope frequency. Surprisingly, neuronal responses recorded in the primary auditory cortex of trained monkeys were globally suppressed by the modulated tone. However, the contrast in neuronal responsi...
متن کاملPerceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex.
The aim of this study was to determine whether auditory perceptual learning is associated with changes in the frequency organization and/or neuronal response properties of primary auditory cortex (AI). Five out of six cats trained on an 8 kHz frequency discrimination task showed improvements in performance that reflected changes in discriminative capacity. Quantitative measures of the response ...
متن کاملPlasticity in primary auditory cortex of monkeys with altered vocal production.
Response properties of primary auditory cortical neurons in the adult common marmoset monkey (Callithrix jacchus) were modified by extensive exposure to altered vocalizations that were self-generated and rehearsed frequently. A laryngeal apparatus modification procedure permanently lowered the frequency content of the native twitter call, a complex communication vocalization consisting of a ser...
متن کاملRearrangement of receptive field topography after intracortical and peripheral stimulation: the role of plasticity in inhibitory pathways.
Intracortical microstimulation (ICMS) of a single site in the somatosensory cortex of rats and monkeys for 2-6 h increases the number of neurons responsive to the skin region corresponding to the ICMS-site receptive field (RF), with very little effect on the position and size of the ICMS-site RF, and the response evoked at the ICMS site by tactile stimulation. Large changes in RF topography are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 1 شماره
صفحات -
تاریخ انتشار 1993